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J .  Phys. A: Math. Gen. 22 (1989) 451-457. Printed in the U K  

Benjamin-Ono interacting solitons as field representatives of 
Galilean point particles 

Maciej Blaszak 
Institute of Physics, A Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland 

Received 16 March 1988, in final form 20 September 1988 

Abstract. The isomorphism between the algebras of conserved integrals for Benjamin-Ono 
interacting solitons and Galilean point particles has been proved. 

1. Introduction 

We consider two Hamiltonian dynamical systems in one space dimension. The first 
one corresponds to the finite-dimensional case of N Galilean particles with unit masses, 
described by the following equation of motion: 

U ,  = J V H  H = i C p :  (1) 
I 

T -  0 where U = ( q l , .  . . , q N ,  p l , .  , . , p N )  , e = (-, A )  is a standard implectic operator leading 
to the following Poisson bracket: 

and V H  denotes the gradient of the Hamiltonian H. The second one corresponds to 
the infinite-dimensional system made of N solitons described by the Benjamin-Ono 
(BO) equation of motion [ 1,2]  

X 

(;u%?u, +f iau3)  dx ( 3 )  

where U = u(x, t )  is the field function, %? denotes the Hilbert transform, 0 = D is an 
implectic operator leading to the following Poisson bracket: 

= L U ,  = K ,  = 4auu, + %?U,, = OV H 

Ix cc 

{ F ,  G)B = P F ) D ( V G )  dx V F  = E ( f )  F = f dx. ( 4 )  

Here D stands for the total x derivative and E is the Euler operator. The system ( 3 )  
belongs to the class of systems completely integrable by the inverse scattering method 

Our aim is to show that N Galilean point particles and N interacting BO solitons 
U ( ' )  [ 4 ]  have isomorphic algebras of conserved integrals. This equivalence of both 
dynamic systems leads to the identification of each interacting soliton U ' ' )  as a field 
representative of the ith point particle. 

~31 .  
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The algebras of constants of motion are built up  using the idea of master integrals 
[ 5 , 6 ] .  Let M be a Poisson manifold and 3 a Poisson algebra with respect to the 
bracket { , }. Then, let 3' be the Abelian subalgebra spanned by the integrals of 
motion H ,  of some dynamical system and let fi denote the map fi : F + { H, F }  on 2. 
T,,, E 3 is called a master integral of 
H I ,  . . . , H, E 2', All?, . . . l?,T, E 2', 
master integrals constitute an algebra. 
degree m then [ 5 ]  

t k  
n , ( t ) =  c ,(fi)kTm 

k = l  k .  

degree m for this system if, for an arbitrary 
Moreover, we have { T,,, T,,} = T,+n- l ,  so the 

Now, if H E 3' and T, is a master integral of 

( 5 )  

is a time-dependent constant of motion for the Hamiltonian system with the Hamil- 
tonian H, i.e. 

dII dn 
d t  d t  

- +{H,II}=O. 

In this language, the time-independent constants of motion H, are master integrals of 
degree 0. For a finite, integrable system with n degrees of freedom, we have n 
functionally independent master integrals of arbitrary degree. Moreover, master 
integrals of degree 0 and  1 are non-canonical action-angle variables [ 6 ]  of this system 
as dTo/dt = 0 and  dT , /d t  = constant. 

Remark. From the definitions of master integral and conserved integral ( 5 ) ,  we find 
that the map er': T, + n, is the isomorphism for two Poisson subalgebras. Hence 
there is no difference whether we investigate directly conserved quantities or  master 
integrals. 

Let S be a tangent bundle of a phase space and LfS be a Lie algebra of vector fields 
with respect to the Lie bracket [ , 1. For a given evolution equation, we may introduce 
a concept of master symmetries T and time-dependent symmetries U (  t) in analogy to 
the concept of master integrals and time-dependent conserved integrals [ 5 ] .  Of course, 
the Noether map BV is the Lie isomorphism between the algebra of master integrals 
and the algebra of Hamiltonian master symmetries of the considered dynamical system. 

In § 2 of this paper we construct the algebra of master integrals for Galilean 
particles, in § 3 we d o  the same for the BO equation and  in the last section we relate 
both results for the soliton surface of the BO system. 

2. An algebra of master integrals and conserved functions for Galilean particles 

Constants of the motion for non-interacting particles, i.e. master integrals of degree 
0, are 

1 
To,n = - E p;" n + l  

- -  
H ,  n=-1 ,0 ,1 ,  . . . .  (7 )  

Note that fiPl is the number of particles N, no is the total momentum P and RI is 
the total energy of the system. It is known [ 5 ]  that, if we know the simplest master 
integral of degree 2 for ( 7 ) ,  then we can generate all other master integrals by simple 
commutation. We found, in our case, the simplest master integral of degree 2 in the 
form T2,-l = Z, qi .  Hence all master integrals can be generated recursively: 

{G,,,, ~ ~ , - l } C ) = 2 n - k ~ k + l , n - l .  (8) 
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The particular choice of structure constants will be clear when we consider the BO 

solitons. According to ( 7 )  and (8) we find 

, ( n + k ) !  1 Tk,n = Z(k, n )  qrpY+l Z(k ,  n )  = ( - 1 )  - - 
I ( n + l ) !  z n k '  (9) 

Hence, for example: 
master integrals (9) takes the form 

= -2 X i  qi,  = - X i  q i p i ,  = -+ Xi qipf. The algebra of 

so its subalgebra of non-canonical action-angle variables is as follows: 

{TI,,, T1 ,de=  ( n  - m ) T l , n + m .  

For Galilean particles with Hamiltonian we find 

Thus time-dependent conserved functions, fulfilling ( 6 ) ,  are of the form 

We notice that all nk,, ( t )  are expressible through the canonical action-angle variables 
(q i ,  Pi ) .  

3. An algebra of Hamiltonian master symmetries and related algebra of master 
integrals for the BO equation 

The algebra of master integrals for the BO equation ( 3 )  can be constructed from the 
algebra of master symmetries via the inverse Noether map. The simplest master 
symmetries of degree 1 are [ 7 ]  

= xu, + u T ~ , ,  = x(4auu,+ %u,,)+2au2+$%u,. ( 1 4 )  
1 

2a 
= - 

Applying T ~ , ,  , Fokas and Fuchssteiner [ 7 ]  generated the whole hierarchy of symmetries 
K ,  for the BO equation. In their notation these three master symmetries for a = f were 
denoted by T ~ ,  T ,  and T. 

Now, we would like to estimate the values of the appropriate structure constants 
in the following commutation relations: 

[K, ,  71,-11= c ( n ) K , - ,  [K, ,  . r1 ,o l=  d ( n ) K ,  [ K , ,  71.11 = f ( n ) K , + , .  (15)  

Observation 1 

d ( n )  = n + 1 

2 ( n + l ) = f ( n ) c ( n + l ) - f ( n - l ) c ( n ) .  
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Proof: The relation [ T ~ , ~ ,  T ~ , ~ ]  = T ~ , ~  and the Jacobi identity imply 

f ( n ) [ K n + 1 ,  7 1 , O l  = [ [ K m  7 1 , 1 1 9  71.01 

=-[[71,0, K n 1 ,  7 l , l l - [ [ 7 l , l >  7 l , o l >  Kn1 

= d ( n ) [ K n ,  ~ 1 , 1 1 + [ K n ,  ~ 1 . 1 1  

= f ( n ) ( d ( n ) +  l)Kn+I. (17) 
Hence, d ( n  + 1 )  = d ( n )  + 1 and from d ( 0 )  = 1 we find (16a). Then, analogously, apply- 
ing the Jacobi identity to [ K , ,  T ~ , ~ ] = ~ [ K , , ,  [ T ~ , ~ ,  T ~ , - ~ ] ]  we obtain (166).  

So, we have some arbitrariness in choosing c( n )  andf (  n ) .  In [7], for example,f( n )  = 1 
and c ( n )  = n(n + l ) ,  but we make another choice. We define K ,  in such a way that the 
one-soliton solution of the flow U, = K ,  has the velocity being the nth power of the 
one-soliton velocity of the BO flow. This is realised by choosing c( n )  = 2n and f( n )  = 
t n + 1 ,  and the first few K ,  are 

K O  = U ,  

K 1  = ( 2 a u 2 +  Xu,), 
K 2 - (B - 3 a 2 U 3 + 4a%uu, + 4auxu, 

K ,  = (16a3u4+ 16a2u2Xu, + 16a2Xu2u, + ~ ~ u ~ u X U U ,  
+ ~ u ( ~ ~ u , ) ' + ~ u X U X U ,  - ~ X U , , , - ~ ~ U U U , , - ~ U U ~ ) ,  

We shall come back to this choice in the next section. 

arbitrary T ~ , ,  through the relation 
As the simplest master symmetry of degree 2 is T ~ , - ~  = x / 2 a ,  we may define an  

[ 7 k , n ,  72,-11 = 2"-kn+l ,n-1  (18) 

which is consistent with our choice of K ,  = T ~ , , ,  T ~ , - ~ ,  T ~ , , ,  and T ~ , ~ .  Another useful 
relation has the form 

[ 7 k , n ,  ~ 1 , - 1 1  = g ( k  n ) T k , n - l .  (19) 

Observation 2. The structure constant g ( k ,  n )  has the value ( n  + k ) / z k - ' .  

Proof: Expressing T ~ , ,  from ( 1 9 )  by T k - l , n + l  and according to (18 )  and applying 
the Jacobi identity we find g ( k  - 1,  n + 1 )  = 2 g ( k ,  n ) .  As g ( 0 ,  n )  = 2n, we obtain the 
result from observation 2 .  

Now, we come to the algebra of master integrals for the BO equation. First, one should 
notice that all T ~ , ~  are Hamiltonian master symmetries. It follows directly from ( 1 8 )  
and from the fact that both K ,  = T ~ , ,  and T ~ , - ~  are Hamiltonian master symmetries as 
well. Then, applying the inverse Noether map to ( 1 9 )  and ( 1 8 ) ,  we find 

and 

J -* J - r  
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where 7 k . n  = Dy,,, = DO Tk,,. Moreover, applying (21) recursively, we may define 
densities of master integrals through the adjoint symmetries D - ' K ,  = yo,, and the 
powers of x variable: 

Let us find the structure of the Lie algebra of master integrals. The leading term 
of the adjoint symmetry yo,, is of the form 

n !  
r (  n )  = (4a)"  ~ 

( n + l ) ! '  
Ly,,, = r(n)u"+'  

Assuming that the leading term uniquely determines each master integral we can easily 
find 

where in particular, for non-canonical action-angle variables, 

{TI,", T l , m ) e  =(n-m)Tl ,n+m* 
Due to the isomorphism of the algebra of master symmetries and  master integrals, 

the structure constants from (24) may be calculated through the Lie bracket of master 
symmetries as well, but then the calculations are much more cumbersome. 

4. Soliton surface 

The aim of this section is to calculate the values of master integrals for the BO equation 
on a soliton surface, i.e. for U = u N ,  where uN means the N-soliton solution of (3). 
First, we notice that, although the BO equation does not possess the local hereditary 
recursion operator in one  space dimension, similar to equations with such an  operator, 
all flows U, = K,  are associated with the same linear problem and K ,  constitutes an  
Abelian subalgebra of symmetries [8]. Hence the N-soliton solution for each flow has 
the same form, differing only in soliton velocities, as was shown in [9]. So, we are 
looking for such a decomposition uN = C, U " )  that 

K m [ U N I = z  A,(m)Uj," (26) , 
and asymptotically, as f +  *E,  U " )  tends to a single soliton U!'). For hierarchies with 
a recursion operator, K ,  were determined uniquely with A , ( m )  being the powers of 
asymptotic speeds of solitons [9, l o ] .  For the BO hierarchy we have chosen the structure 
constant f ( m )  in such a way that A , ( m )  are also the powers of soliton velocities p z ,  
i.e. A l ( m )  = p p .  Moreover, the decomposition (26) introduces a suitable basis 

3c 

b, = j-, x k u ( ' )  dx 

in the algebra of master integrals such that 
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T k , n  = c(k, n )  c P;+Ib,k. (28) 
I 

Now, we would like to calculate the values of the basic master integrals (27), 
although we d o  not yet know an  explicit form of U " ) ,  but this is not necessary. From 
the property 

d k  - bik = constant 
d t k  

which each basic master integral for an  arbitrary moment of time has to fulfil, we may 
calculate (27) for t + CO when U " ) +  U:'). As 

u ( i )  _ _  1 Pi - 
a p:(x+qi( t ) )2+1 

we have 

c PY+' 
7 T 1  

To,, = - - 
4 a 2 n + 1  

For k >  1 the integrals (27) contain infinite terms. So let us remove the inconvenient 
infinities by defining the map p : F +  of the functional F into the value of its finite 
part. Hence we obtain 

k n + l  7T f,,, = (- 1) ' c( k, n ) q:pr+' = - ?( k, n ) q p i  . (32) 7 T k  

a a i 4a2 i 
b:, = (-l),- q ,  

Comparing ( 9 ) ,  (22) and (32), we find that, on the soliton surface, p = ( 4 a 2 / r ) p  
is the bijective map of BO master integrals onto Galilean master integrals: pT,,, = Tk,n. 
Moreover, according to (10) and (24), p is a Lie algebra isomorphism: 

Finally, we would like to find the explicit form of interacting solitons U ( ' ) .  The 
method of finding U " )  for hierarchies with a hereditary recursion operator was presented 
in [ l l ] .  

Because the BO hierarchy K ,  is an Abelian subalgebra, this method may be applied 
successfully and, as a result, one finds the interacting solitons obtained for the first 
time by Yoneyama [4]. The reader may find in [4] the proof of condition (29), i.e. 
that U " )  are conserved densities for which centres of gravity move at constant speeds. 
The explicit form of U " )  is: D, ,D- 'uN(zl , .  . . , zN),  where uN is the N-soliton solution 
of the BO equation, z, = x + p ,  + c,, D-I is the inverse of 0, and Dz, is the total z ,  
derivative. 
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